Pointwise convergence of nonconventional averages

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Convergence of Some Multiple Ergodic Averages

We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...

متن کامل

On the Norm Convergence of Nonconventional Ergodic Averages

We offer a proof of the following nonconventional ergodic theorem: Theorem. If Ti : Z y (X,Σ, μ) for i = 1, 2, . . . , d are commuting probability-preserving Z-actions, (IN )N≥1 is a Følner sequence of subsets of Z, (aN )N≥1 is a base-point sequence in Z and f1, f2, . . . , fd ∈ L∞(μ) then the nonconventional ergodic averages

متن کامل

Pointwise Convergence of Ergodic Averages in Orlicz Spaces

converge a.e. for all f in L log log(L) but fail to have a finite limit for an f ∈ L. In fact, we show that for each Orlicz space properly contained in L, 1 ≤ q < ∞, there is a sequence along which the ergodic averages converge for functions in the Orlicz space, but diverge for all f ∈ L . This extends the work of K. Reinhold, who, building on the work of A. Bellow, constructed a sequence for w...

متن کامل

Rates of Divergence of Nonconventional Ergodic Averages

We study the rate of growth of ergodic sums along a sequence (an) of times: SNf(x) = ∑ n≤N f(T nx). We characterize the maximal rate of growth and identify a number of sequences such as an = 2, along which the maximal rate of growth is achieved. We also return to Khintchine’s Strong Uniform Distribution Conjecture that the averages (1/N) ∑ n≤N f(nx mod 1) converge pointwise to ∫ f for integrabl...

متن کامل

Pointwise Convergence of Trigonometric Series

We establish two results in the pointwise convergence problem of a trigonometric series [An] £ cne inl with lim Hm £ I bTck | = 0 |n|< -x. * Jn-»oo \k\-n for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test theorem and Fatou's theorem, but also complement the results on pointwise convergence of those Fourier series associated with known 1}-convergen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2005

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm102-2-6